🧠
BRIDGE Lab Documentation
  • BRIDGE Lab Documentation
  • 📘General
    • About Us
    • Onboarding
      • First Steps
      • Research Specialist Training
      • Project Coordinator Training
    • Misc
      • How to do misc things
      • Burning Scans to a Disc
      • Setting Up Meetings in the Conference Room
      • Printing
    • Imaging Glossary
  • 🖇️Admin
    • Ourday
    • Training
    • Regulatory
    • Social Media
    • REDCap
      • Archiving REDCap Projects
  • 🖥️Tech
    • Setting Up Meetings in the Conference Room
    • Effective Troubleshooting
    • Remote Work Resources
    • Arthur
    • Servers
      • Connecting to an External Server
    • Bash 101
      • What is Bash?
      • Bash Examples
      • How to add elements to your bash profile
    • git and Github
  • 🩻Image Acquisition
    • ViSTa
  • 🗃️Data Organization
    • BIDs Data Formatting
    • MRI Data Organization
  • 🖼️Image Analysis
    • Image QC
      • Raw Data QC
        • Diffusion QC
        • T1/T2 QC
        • ViSTa QC
        • Spectroscopy QC
      • PyDesigner QC
    • Project Lifecycle
    • General Concepts
    • Raw Data
    • Preprocessing
      • Denoising UNI MP2RAGE Images
      • PyDesigner
      • ViSTa
    • Native Space Analysis
      • TractSeg
        • TractSeg + Within-Subject Registration
      • Segmentation
        • LST
        • Freesurfer
        • NOMIS
    • Registration
      • DTI-TK
      • TBSS
      • Coordinate Systems
    • Other Pipelines
    • Archiving
  • 📊Data Viz and Stats
    • Plotting in R
  • 📚Imaging Library
Powered by GitBook
On this page
  • Essential Concepts
  • Registration Decision Points
  1. Image Analysis

Registration

Essential Concepts

  • Image Spaces (associated with distinct coordinate system)

    • Native space – coordinates unique to subject’s head placement in MRI scanner

    • Standard space – standard defined coordinates across all images in this space define anatomy location

      • Images in this space can have different resolution

  • Coordinate Systems

    • Voxel coordinates

      • no units; integers

      • voxel count in each dimension reflecting matrix size

      • Origin: corner of image (e.g., 0,0,0 or 1,1,1)

      • Origin and axes naming conventions differ in programs

    • World coordinates

      • Have units in mm; floating values

      • Denote anatomy

        • Handedness system

          • Right-handed (RAS) system

            • x+ Left-Right

            • y+ Posterior-Anterior

            • z+ Inferior-Superior

            • Default for: MNI152 space, NifTi

        • LPS system

          • Default for: Dicom

    • Origin: can differ in programs, standard space (e.g., MNI152 space origin at anterior commissure)

  • Standard Templates

    • RULE: Know demographics of cases used to generate atlas, try match template and study cohort

    • Talairach and Tournoux (TT space)

      • 1 postmortem brain, female, 60 years old

    • MNI152/ICBM 152 (MNI152 space)

      • 152 healthy young adults

    • Study-Specific Templates (Study Specific space)

      • Need substantial representative cases to make

  • Standard Atlas

    • RULE: Know demographics of cases used to generate atlas; MAY BE DIFFER from template in same space, try match atlas, template and study cohort

    • Talairach and Tournoux (MNI152 space) - discrete

      • 1 postmortem brain, female, 60 years old

    • AAL (MNI152 space) - discrete

      • Multiple scans from 1 healthy adult

    • Harvard-Oxford (MNI152 space) - probabilistic

      • 37 healthy adults

    • JHU WM (MNI152 space) – probabilistic

      • 28 young healthy adults

Registration Decision Points

  • Prep - QC input & reference images

    • Artifacts

    • Sharpness of anatomical features

    • Variability of anatomy

    • Comparable demographics (e.g., atlas, standard template, study cohort)

    • FOV sampling of body similar (e.g., amount of neck included)

  • Prep - Reorient (optional)

    • Initialization

  • Prep - Crop (optional)

    • Remove non brain areas in FOV in both images so sampling similar (e.g., neck)

  • Prep - Brain extraction of input & reference image (optional)

    • RULE: input & reference image MUST match in skull sampling (BAD: 1 w/skull, 1 w/out)

    • Quality needs to be good, if not – better to not do

  • Registration - Spatial transformations

    • DEFINITION: Calculate the best alignment of the images by determining parameters of the spatial transformation

    • Linear Transformation (within-subject, same anatomy)

      • Rigid-Body (6-DOF: 3 rotations, 3 translations)

        • Within-subject registration

        • Initializing other methods

      • Affine (12-DOF: 3 rotations, 3 translations, 3 scaling, 3 sheers/skews)

        • Eddy-current distortion correction

        • Initializing nonlinear transformations

    • Non-linear Transformation/Warp (between-subject, differ anatomy)

      • 12+ DOF

        • REQUIRE: Initialization with affine registration

  • Resample/Transform – Apply the spatial transformation & creating image in new space

    • RULE: Avoid degradation of images; resample/interpolate only 1x

    • Create and check quality of separate registrations before concatenating and applying to image 1x

Last updated 6 months ago

🖼️